Longitudinal cohort study on the effectiveness of lipid apheresis treatment to reduce high lipoprotein(a) levels and prevent major adverse coronary events Beate R Jaeger^{1*}, Yvonne Richter², Dorothea Nagel², Franz Heigl³, Anja Vogt⁴, Eberhard Roeseler⁵, Klaus Parhofer⁶, Wolfgang Ramlow⁷, Michael Koch⁸, Gerd Utermann⁹, Carlos A Labarrere¹⁰ and Dietrich Seidel², for the Group of Clinical Investigators¹¹ # SUMMARY **Background** We investigated in a longitudinal, multicenter, cohort study whether combined lipid apheresis and lipid-lowering medication can reduce extremely high levels of lipoprotein(a) (Lp[a]) and thus prevent major adverse coronary events (MACE) more efficaciously than lipid-lowering medication alone. Methods Eligible patients had coronary artery disease and Lp(a) levels ≥2.14 μmol/l (95th percentile). All patients received lipid-lowering medications alone until maximally tolerated doses were no longer effective, followed by combined lipid apheresis and lipid-lowering medication. The rates of the primary outcome, MACE, were recorded for both periods. **Results** A total of 120 patients were included. The mean duration of lipid-lowering therapy alone was 5.6 ± 5.8 years, and that of apheresis was 5.0 ± 3.6 years. Median Lp(a) concentration was reduced from $4.00 \, \mu \text{mol/l}$ to $1.07 \, \mu \text{mol/l}$ with apheresis treatment (P < 0.0001); the corresponding mean annual MACE rate per patient was $1.056 \, \text{versus} \, 0.144 \, (P < 0.0001)$. **Conclusions** Lowering of Lp(a) levels by apheresis was efficacious and safe, and we recommend this therapy for patients in whom maximally tolerated doses of medication alone have failed to control coronary artery disease-associated events. KEYWORDS atherothrombosis, lipid apheresis, lipoprotein(a), myocardial infarction, MACE ¹Labor Dr Stein und Kollegen, Medizinisches Versorgungszentrum Laboratoriumsmedizin, Mikrobiologie, Infektionsepidemiologie, Virologie, Transfusionsmedizin und Humangenetik, Mönchengladbach, Germany ²Institut für Klinische Chemie und Laboratoriumsmedizin, Ludwig-Maximilians-Universität München, Germany ³Medizinisches Versorgungszentrum Kempten-Allgäu, Germany ⁴Abteilung für Stoffwechselkrankheiten der Charite Berlin, Germany ⁵Klinik für Nieren- und Hochdruckkrankheiten Hannover, Germany ⁶Medizinische Klinik II der Ludwig-Maximilians-Universität München, Germany ⁷Nephrologische Gemeinschaftspraxis Rostock, Germany ⁸Dialysepraxis Ardeystrasse, Witten, Germany ⁹Sektion für Humangenetik, Department für Medizinische Genetik, Molekulare Und Klinische Pharmakologie der Medizinischen Universität Innsbruck, Austria ¹⁰Methodist Research Institute, Clarian Health, Indianapolis, USA 11The Clinical investigators who participated in the Lipoprotein(a) Study Group are listed in the Supplementary Appendix 1 online. ## Correspondence *Labor Dr Stein und Kollegen, Medizinisches Versorgungszentrum Laboratoriumsmedizin, Mikrobiologie, Infektionsepidemiologie, Virologie, Transfusionsmedizin und Humangenetik, Mönchengladbach, Germany Tel: +44 2058 892 8977 Email: drbjaeger@web.de Received 4 June 2008 Accepted 12 December 2008 www.nature.com/clinicalpractice doi:10.1038/ncpcardio1456 ## INTRODUCTION Lipoprotein(a) (Lp[a]) is a macromolecular complex assembled from apolipoprotein A and LDL. Lp(a) also acts as a structurally homologous competitor of plasminogen and is thought, therefore, to have both atherogenic and prothrombotic potential. Since the discovery of this lipoprotein in the 1960s by Berg, 1 several studies have shown an association between elevated Lp(a) levels and recurrent atherothrombotic complications, 2-12 particularly myocardial infarction (MI)6,7 and stroke in young and middle-aged individuals, 13 peripheral artery disease, 14 and progression of coronary artery disease (CAD) caused by raised LDL cholesterol levels. 15 By contrast, however, other reports have described Lp(a) as a marker of longevity¹⁶ or as a risk factor that becomes negligible once LDL cholesterol levels are effectively lowered to recommended target levels $(\le 2.59 \,\text{mmol/l} \,[\text{i.e.} \le 100 \,\text{mg/dl}]).^{17-19} \,\text{Moreover},$ Lp(a) exists in more than 30 isoforms that have variability in number of kringle 4 repeats²⁰; small isoforms are associated with increased risk of CAD and MI in some populations but not in others.²¹ Interpretation of the predictive value of Lp(a) has been further complicated by the lack of standardization of Lp(a) measurement²² and by the fact that routinely applied assays to test LDL cholesterol levels frequently indicate falsely high levels in the presence of elevated Lp(a) concentrations that affect estimation of true risk.23,24 In clinical practice, the contradictory reports have affected physicians' decisions regarding evaluation of risk and treatment of individuals with excessively elevated Lp(a) levels. Several studies have demonstrated that extremely high Lp(a) concentrations (>90th percentile) are associated with a more than doubled risk of MI in men and women and with a 10 year MI risk of more than 20% when coupled with hypertension, smoking, or hypercholesterolemia. ^{3,4,11,25} These large epidemiological studies also confirmed that Lp(a) values in the 90th percentile or higher are found in 10% of the general population. Medications such as nicotinic acid, ²⁶ nateglinide, ²⁷ and estrogens for hormone replacement ²⁸ can reduce Lp(a) levels, but only by 10–30%. Lipid apheresis can reduce extremely high Lp(a) levels much further. Successful outcomes with this method have been reported for cases of familial hypercholesterolemia and advanced stages of CAD and transplant arteriosclerosis, and prevention of restenosis after percutaneous coronary intervention (PCI) has also been reported. ^{29–31} Most apheresis procedures are not, however, specific for Lp(a) removal; they remove both Lp(a) and LDL particles with similar controlled efficacy. We performed a longitudinal, controlled, multicenter cohort study to investigate whether drastic Lp(a) reduction by means of apheresis treatment, used as a last-resort therapy, would lessen the rate of major adverse coronary events (MACE) in patients with extremely high Lp(a) levels, compared with lipid-lowering medication alone. ## **METHODS** # Study design In Germany, apheresis can be used only as a lastresort therapy, when all other treatments have been proved unsuccessful, in patients with familial hypercholesterolemia or rapidly progressing CAD with LDL cholesterol and/or Lp(a) elevations far above target levels. Permission is granted on the basis of meticulous and continuous documentation of outcomes and complications and annual external expert lipidologic and cardiologic examinations before the beginning and throughout the duration of therapy. No ethics approval was sought for this study because all potential participants identified by their physicians had already been referred to their respective apheresis center and had at least 3 months of apheresis treatment; their inclusion in the study did not affect the participants' treatment regimens, which were prescribed according to the reimbursement guidelines of the German Federal Joint Committee. 32 All data from before the patient's enrollment in the study (i.e. during their treatment with lipid-lowering medication alone and at least 3 months of apheresis treatment) were analyzed retrospectively. Prospective analysis was performed for any data acquired after enrollment. # **Patients** The lead investigator (BRJ) contacted 84 German apheresis centers in December 2004 and asked their physicians to invite all patients with Lp(a) concentration above twice the upper limit of normal (≥2.14 µmol/l) before the initiation of apheresis, who were being treated with apheresis between December 2004 and December 2005, to participate in the study. Of the apheresis centers approached, 27 treated patients with Lp(a) levels above 2.14 µmol/l; all of the patients who met this specification volunteered to participate and signed an informed consent form. Patients were included in the study if they met the following conditions: (a) Lp(a) concentration at the initiation of apheresis above ≥2.14 µmol/l; (b) more than 50% vessel narrowing on angiography and/or a history of MI; and (c) available documentation of maximum tolerated dose of lipid-lowering therapy, including medication and apheresis treatment for at least 3 months, prescribed according to the reimbursement guidelines of the German Federal Joint Committee.³² Patients with proven familial hypercholesterolemia were excluded because this disease is known to have a distinctly different molecular pathology. Patients with extracardiac manifestation of atherosclerotic disease were also excluded from the study because they did not meet the inclusion criteria. #### Medications Established risk factors were treated according to the American College of Cardiology/American Heart Association guidelines³⁴ in all patients throughout the study. Patients received antihypertensive medication, antiplatelet therapy, and combined antiplatelet therapy and phenprocoumon for atrial fibrillation or thrombosis. Basic lipid-lowering medication mostly consisted of combination therapy of statins with ezetimibe, nicotinic acid, fibrates, colestyramine, or omega-3 fatty acids; regimens were adapted over the study period as increasingly potent drugs became available. All patients continued taking lipid-lowering medication at maximally tolerated doses during apheresis treatment. ## Lipid apheresis Study participants underwent apheresis every week, 2 weeks, or 10 days for a minimum of 3 months. Details of the lipid apheresis procedures—extracorporeal blood purification to eliminate LDL cholesterol and Lp(a) from plasma through binding of apoprotein B—have been described elsewhere. ³⁶ Briefly, the following methods and devices were used: heparin-mediated LDL precipitation (HELP system® for Plasmat® Futura; B Braun AG, Melsungen, Germany), whole-blood (DALI; Fresenius SE, Bad Homberg, Germany), dextran-sulfate (LIPOSORBER® system; Kaneka, Osaka, Japan), double filtration plasmapheresis systems (OctoNova®; Diamed, Cologne, Germany, and Plasmaflo® Rheofilter®, Asahi Kasei Kuraray Medical Co., Ltd. Japan), or immune adsorption (Plasmaselect/Terasorb; Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and Excorim®; Excorim KB Corp, Lund, Sweden) by use of antibody columns directed against the protein part of Lp(a). #### Data collection The cutoff date for data collection was December 2005. The primary outcome was MACE, which comprised MI, the need for PCI and/or CABG, and cardiac death. Secondary outcomes were non-cardiac mortality, reduction of Lp(a), and long-term tolerability of lipid-lowering interventions. A standard questionnaire was used in all apheresis centers to gather information on these outcomes as well as traditional risk factors, family history, cerebral or peripheral artery disease, medication and doses, and laboratory data. Available hospital records were also obtained and assessed as confirmatory information. The study was documented according to the Ulstein style;³³ data were entered into a database by one investigator, and cross-checked twice each by two independent investigators who were unaware of patients' identities and histories. Lipoprotein profiles were established and monitored by measurement of total cholesterol, non-fasting triglycerides, LDL cholesterol (measured directly rather than calculated), HDL cholesterol and Lp(a) concentrations; levels of fibrinogen were also monitored. Creatinine and C-reactive protein were measured at baseline only. Corrected LDL cholesterol levels were also calculated because around 45% of the Lp(a) particle is falsely added to LDL cholesterol in almost all routinely used LDL assays. 23,24 All apheresis centers used the same assays before and after initiation of the apheresis treatment regimen. During apheresis treatment, laboratory variables were measured 30 minutes after the end of the apheresis session, when the reduction in lipid levels is greatest. Laboratory values are known to rise between apheresis sessions and, therefore, we also provide mean interval values obtained between apheresis treatments., Accuracy of extremely elevated Lp(a) levels measured in the respective centers was assessed by cross-checking of a randomly selected subset of lipoprotein profiles for 45 patients by the Institute of Clinical Chemistry, LMU University Munich, Germany, where a patented lyophilized Lp(a) standard was developed.³⁵ ## Statistical analysis The primary objective was to compare the annual MACE rate arising with lipid-lowering medication only versus that arising with medication plus apheresis in the same individuals. The time periods for each treatment differed between patients and, therefore, the annual MACE rate per patient was calculated by dividing individual MACE rate during the period of lipid-lowering medication alone and during the apheresis treatment period by the individual's observation times. Annual rates for the individual components of MI, CABG, PCI, and cardiac death were similarly calculated. If a patient experienced MACE more than once within 1 day, only the triggering event was counted; if patients experienced repeated occurrences of individual components of MACE on different days, all events were considered. Differences between the two treatment periods were calculated with a two-sided Wilcoxon matched-pairs signed-rank test (α <0.05). We also used the Kruskal-Wallis test to investigate whether the apheresis techniques differed in efficacy with regard to the reduction of MACE rate. This analysis also allowed us to indirectly assess the potential impact of the concomitant partial elimination of other risk factors, such as fibrinogen and C-reactive protein, which occurred with two of the devices, namely the heparin-mediated LDL precipitation and the double filtration plasmapheresis systems. We performed two subgroup analyses in the study. First, we investigated the effect of LDL cholesterol lowering on MACE outcomes, since lowering of LDL cholesterol is purported to negate the effect of lowering Lp(a). To assess this difference, we stratified the cohort into patients whose LDL cholesterol levels reached less than 2.59 mmol/l during lipid-lowering medication alone and those who did not. Second, we assessed differences in MACE rates between patients who withdrew from apheresis and those who continued until the end of the study. # RESULTS # Patients' characteristics Of the 144 patients who volunteered for the study after being identified by apheresis center Table 1 Patient baseline characteristics. | Characteristic | Patients (%) [n = 120] or value | |-------------------------------------------------------|---------------------------------| | Anthropometric | | | Male | 86 (71.7) | | Mean (±SD) age at CAD diagnosis (years) | 48.8±11.0 | | Mean (±SD) age at initiation of apheresis (years) | 54.4±10.6 | | Mean (±SD) BMI (kg/m2) | 26.7±3.5 | | Clinical | | | Positive family history for CADa | 92 (76.7) | | Current smokers | 2 (1.7) | | Former smokers ^b | 58 (48.3) | | Never smoked | 60 (50.0) | | Diabetes mellitus ^c | 19 (15.8) | | Type 1 diabetes | 17 (14.2) | | Type 2 diabetes | 2 (1.7) | | Hyperfibrinogenemia (>13.2 µmol/l) | 16 (13.3) | | Elevated C-reactive protein (>1.0 mg/dl) ^d | 20 (22.7) | | Elevated creatinine levels (>106 µ mol/l)e | 16 (13.3) | | Terminal kidney failure | 4 (3.3) | | Renal artery stenosis | 5 (4.2) | | Cerebral atherosclerosis | 66 (55.0) | | Peripheral atherosclerosis | 32 (26.7) | ^aA positive family history for CAD or stroke in first-degree relatives before age 65 years. ^bOf the former smokers, the majority (82.3%) quit smoking before or at the time of CAD diagnosis, 11.7% quit during lipid-lowering medication alone, and 6.0% quit at or after the onset of apheresis. ^cOf the patients with diabetes mellitus, 15 patients were receiving insulin in addition to oral medication. ^dPlasma C-reactive protein concentration before apheresis was available in 88 patients; the mean level was 1.2±2.2 mg/dl. ^eMean serum creatinine concentration was 97.2±53.0 µmol/l. physicians as having high Lp(a) concentrations, 7 were excluded because of familial hypercholesterolemia and 17 were excluded because they had atherosclerotic disease without CAD; therefore, 120 patients that met the inclusion criteria were included in the study. Table 1 shows the patients' clinical characteristics at baseline (before apheresis). The mean age at which CAD was first diagnosed was $48.8 \, (\pm 11, {\rm range} \, 16-73)$ years in the 120 recruited patients. A significant number of patients had concomitant cerebral (55%) and/or peripheral (26.7%) atherosclerosis. The percentage of former smokers was high (48.3%) compared with that in the total German population (18.9%).³⁷ Mean overall follow-up duration was 10.9 ± 6.6 years, with the mean duration of treatment with lipid-lowering medication only being 5.5 ± 5.8 years and time from start of apheresis to end of follow-up being 5.0 ± 3.6 years. Apheresis was performed weekly in 94 individuals, fortnightly in 24 participants, and every 10 days in 2 patients. Characteristics of therapy are shown in Table 2. # Laboratory findings before and after intervention Laboratory findings before apheresis (i.e. during lipid-lowering medication alone) and during apheresis are shown in Table 3. Lp(a) levels were substantially elevated, compared with normal reference ranges, when patients were taking maximal lipid-lowering medication; the median concentration of Lp(a) before apheresis treatment was 4.00 µmol/l (i.e. 112 mg/dl). By contrast, total cholesterol, nonfasting triglycerides, HDL cholesterol, C-reactive protein and fibrinogen levels were within, or only slightly above, reference ranges, indicating that these risk factors were adequately controlled by standard medication. The mean LDL cholesterol level was still above the target value despite maximal lipid-lowering medication. Apheresis reduced the median Lp(a) levels (trough concentrations) by 73% compared with those during lipid-lowering medication alone (i.e. to 1.07 µmol/l [30 mg/dl]) and substantially lowered all other laboratory values (all *P*<0.0001; Table 3). The reduction of nonfasting triglycerides achieved by apheresis was not enduring because of quick synthesis rates. Reductions in fibrinogen and C-reactive protein had no significant effect on MACE reduction in this cohort. # Major adverse coronary events The incidence of MACE, particularly PCI, increased exponentially during the period of lipid-lowering medication alone, despite maximally tolerated doses being administered (Figure 1). During this period, the overall annual MACE rate was 1.056 MACE per patient. The annual complication rate during apheresis was 0.144 MACE per patient; therefore, the observed apheresis-associated risk reduction for all MACE was 86% (P<0.0001, Figure 2). Of the MACE that occurred during the apheresis treatment period, 40% occurred in the first year, and of these, 77% of events occurred in the first 6 months. The MACE rate subsequently declined (Figure 1). No differences in MACE reduction were found among the different lipid apheresis devices used. Before apheresis, MI was recorded 89 times in 68 patients, PCI 146 times in 69 patients, and CABG 62 times in 57 patients, yielding a total of 297 MACE in 103 patients. During apheresis, the complication rate decreased to 57 MACE in 29 patients, comprising 7 MI in 6 patients, 36 PCI in 19 patients and 14 CABG in 12 patients (Figure 1). The youngest study participant was 16 years old when he experienced the first of three MIs; he began apheresis at age 33 and has been event free for 6 years. Of the patients who underwent CABG, 18% had repeat surgery at least once (one patient underwent three operations). Also, several patients had exaggerated thrombus formation shortly after PCI; the worst case was one patient who had to undergo PCI reintervention five times within 1 week. Analysis of the individual components (Figure 2) revealed that the annual MI rate decreased from 0.374 to 0.011 (97%, P<0.0001), the annual PCI rate from 0.797 to 0.069 (91%, P<0.0001) and the annual rate of CABG operations from 0.179 to 0.020 (89%, P<0.0001). All patients included in the study had to be alive until at least the third month of apheresis treatment to enable comparison of data before and during apheresis. Because of this inclusion criterion, mortality during the period patients were receiving lipid-lowering medication alone was zero. Death rate during the apheresis period was one death per 261 patient years, and was counted as part of the MACE. In total, five patients died of cardiac complications: three sudden cardiac deaths, one fatal MI, and one fatal cardioembolic stroke. These five patients had severe long-term cardiac histories with unfavorable comorbidities, including long-term terminal renal failure, end-stage diabetic complications such as limb amputation, severe ischemic cardiomyopathy, recurrent pulmonary embolism, and complicated surgery for severe aortic valve stenosis. Three of the five patients died within the first year of apheresis treatment. No further reasons of death were identified, and no associations were found between the cause or time of death and apheresis treatment itself. # Effect of withdrawal from apheresis Withdrawal from apheresis or long interruption to apheresis treatment was necessary for 17 patients because reimbursement was cancelled. For these patients, we analyzed complication rates before and during apheresis and after withdrawal. The mean duration of receiving lipid-lowering medication alone was 4.3 ± 3.5 years, during which the annual complication rate was 1.07 per patient. The mean duration of apheresis was 4.3 ± 3.7 Table 2 Patient treatment characteristics. | Therapy | Patients (n = 120) | | | | |-------------------------------------------------------|--------------------|--|--|--| | Antihypertensive medication ^a | 84 (70.0%) | | | | | β-Blockers ^b | 95 (79.2%) | | | | | Diuretics | 54 (45.0%) | | | | | Angiotensin II type I receptor antagonists | 48 (40.0%) | | | | | Angiotensin-converting enzyme inhibitors | 22 (18.3%) | | | | | Nitrates | 26 (21.7%) | | | | | Calcium channel blockers | 24 (20.0%) | | | | | Antiplatelet medication | 120 (100.0%) | | | | | 100 mg Acetylsalicylic acid/day | 88 (73.3%) | | | | | 75 mg Clopidogrel/day | 36 (30.0%) | | | | | 100 mg Acetylsalicylic acid and 75 mg clopidogrel/day | 23 (19.2%) | | | | | Phenprocoumon ^c | 13 (10.8%) | | | | | Lipid-lowering medication | 120 (100.0%) | | | | | Statins ^d | 114 (95.0%) | | | | | Ezetimibe | 50 (41.7%) | | | | | Nicotinic acid | 10 (8.3%) | | | | | Fibrates | 7 (5.8%) | | | | | Cholestyramine | 4 (3.3%) | | | | | Omega-3 fatty acids | 4 (3.3%) | | | | | Apheresis ^e | 120 (100%) | | | | | Heparin-mediated LDL precipitation | 56 (39.7%) | | | | | Whole-blood adsorption | 33 (23.4%) | | | | | Double filtration plasmapheresis | 24 (17.0%) | | | | | Dextran sulfate adsorption | 19 (13.5%) | | | | | Immune adsorption | 9 (6.4%) | | | | ^aAntihypertensive therapy was given to 70% of the patients to treat arterial hypertension. ^bIn some cases, β-blockers were prescribed for reasons other than antihypertensive care (e.g. as antiarrythmics). ^cCombined with antiplatelet therapy for atrial fibrillation or thrombosis. ^dIncluding 40–80 mg atorvastatin daily, 40–80 mg simvastatin daily, and 80 mg fluvastatin daily, ^eThe values for the individual types of apheresis add up to more than 120 (100%), since patients swapped method according to need. years, during which the annual MACE rate fell to 0.04 per patient. During the withdrawal period to the end of follow-up or until reinitiation of apheresis (1.9 [±1.3] years), the annual complication rate increased to 0.13 per patient, including six cardiac interventions in four patients and one fatal MI. These data show a clear worsening trend, although statistical analyses were not performed because of the small numbers. # Effects of LDL cholesterol lowering In the stratified analysis, LDL cholesterol levels of 2.59 mmol/l (i.e. 100 mg/dl) or lower were achieved Table 3 Laboratory values before and during apheresis treatment. | Laboratory variable | Target level | Mean (±SD) concentration | | | | |-----------------------------------------|--------------|--------------------------|-----------------------------------|-------------------------------------|--| | | | Before | During apheresis | | | | | | apheresis ^a | Trough concentration ^b | Interval concentration ^c | | | Lipoprotein(a) (μmol/l) ^d | <1.07 | 4.21 ± 1.50 | 1.18±0.57 | 2.68±0.89 | | | Total cholesterol (mmol/l) ^e | <5.18 | 5.67 ± 1.86 | 2.64 ± 0.75 | 4.12±1.19 | | | LDL cholesterol (mmol/l)e | <2.59 | 3.26 ± 1.27 | 1.17±0.60 | 2.20 ± 0.85 | | | HDL cholesterol (mmol/l)e | >1.04 | 1.40 ± 0.44 | 1.19 ± 0.36 | 1.35 ± 0.39 | | | Triglycerides (mmol/l) ^f | <2.03 | 2.05±1.31 | 0.97 ± 0.63 | 1.47 ± 0.86 | | | Fibrinogen (µmol/l) ⁹ | <8.82 | 9.58 ± 2.82 | 5.85±2.88 | 8.47 ± 2.44 | | *P*<0.0001 for all comparisons. ^aMeasured during therapy with maximally tolerated lipid-lowering medication. ^bSamples were taken around 30 min after the end of apheresis. ^cThe average reduction achieved in the interval between two apheresis sessions. ^dTo convert to mg/dl divide by 0.0357. ^eTo convert to mg/dl divide by 0.0259. ^fTo convert to mg/dl divide by 0.0113. Values were available for only 95 patients. ^gTo convert to mg/dl divide by 0.0294. Values were available for only 88 patients. with lipid-lowering medication alone in 42 of 120 patients. The mean LDL cholesterol concentration among these patients was $1.97 \pm 0.44 \, \text{mmol/l}$, compared with 3.96 ± 0.96 mmol/l among patients whose levels did not fall below this threshold. The levels of Lp(a) were similar in the two subgroups, as were levels of HDL cholesterol, triglycerides, and fibrinogen (Table 4). When measured LDL cholesterol levels were corrected for cholesterol derived from Lp(a), the LDL cholesterol concentrations before and during apheresis were only 0.60 mmol/l and 0.47 mmol/l, respectively, in patients who achieved uncorrected LDL cholesterol concentrations lower than 2.59 mmol/l with lipid-lowering medication alone. The corrected values were 2.56 mmol/l and 0.98 mmol/l, respectively, in those who did not. The MACE rates before and during apheresis treatment did not differ significantly between these subgroups (Table 5), indicating that the reduction of LDL cholesterol levels had little impact on the reduction of MACE. # Long-term tolerability of lipid-lowering medication and lipid apheresis During the period of analysis, 15% of patients had to stop statin therapy because of myopathy and an additional 3% of patients switched to another statin because of intolerance to the medication. Of the 50 patients taking ezetimibe, 5% reported gastrointestinal problems or myopathy. No cases of rhabdomyolysis occurred. Adherence to apheresis treatment with intervals of 1 week, 2 weeks, or 10 days was excellent (100%). No major adverse effects were observed in any schedule. Minor complications at the site of venipuncture, transient hypotension, muscle cramps, and fatigue after treatment occurred in less than 5% of patients and were mostly related to the extracorporeal procedure, rather than to a specific device. # **DISCUSSION** Given the hypothesis that extremely high Lp(a) concentrations play a crucial role in atherothrombosis, lowering levels should reduce the risk of atherothrombotic complications. Our findings suggest that lipid apheresis in these patients achieves near-normal Lp(a) levels and prevents MACE. These effects were seen across all 27 participating centers. The efficacy of apheresis is further supported by the increased age and longer history of MACE at the start of this therapy than at the start of maximally tolerated lipid-lowering medication alone, and by a threefold increase of MACE within 2 years in a subgroup who withdrew from apheresis. The MACE rate was highest before apheresis despite the patients receiving state-of-the-art lipid-lowering regimens throughout the study, presumably because Lp(a) levels were substantially raised. The decreased MACE rates during apheresis corresponded with dramatic reductions in Lp(a) levels. The results were not confounded by effects of hypertension and diabetes, since treatments were maintained before and during apheresis. Likewise, the timing of smoking cessation did not affect outcomes. **Figure 1** Absolute numbers of major adverse coronary events during lipid-lowering medication alone and during combined lipid-lowering medication and lipid apheresis. Timepoint zero corresponds with the beginning of apheresis treatment for each patient. Since individual observation times varied, the number of patients studied for each year is shown in the lower panel. Abbreviations: CAD, coronary artery disease; Lp(a), lipoprotein(a); MACE, major adverse coronary events; MI, myocardial infarction; PCI, percutaneous coronary intervention. In support of the relationship between Lp(a) and MACE, the 4S study of patients with coronary heart disease showed that the rate of recurrent MACE doubled, and the statin effect on death reduction was notably decreased, in patients with high Lp(a) levels compared with that in patients with moderate Lp(a) levels. ⁴ The Copenhagen Study²⁵ reported a 10 year MI risk of more than 20% in patients with extremely high Lp(a) concentrations and hypertension, history of smoking, or both. Simultaneously elevated Lp(a) and LDL cholesterol levels multiply the risk of MACE, ^{2,4,8,11,15,24} and whether clinical improvement achieved with apheresis truly originates from Lp(a) reduction or results from the concomitant reduction of LDL cholesterol and Lp(a) by similar proportions, is debated. One idea is that Lp(a) elevations are irrelevant once LDL cholesterol is sufficiently lowered. ^{17–19} The Familial Hypercholesteroleamia Regression Study (FHRS)¹⁷ and the LDL Apheresis Atherosclerosis Regression Study (LAARS)¹⁸ reported that apheresis significantly reduces levels of LDL cholesterol and Lp(a). In patients whose LDL cholesterol levels were effectively lowered by medication or apheresis, though, reduction of Lp(a) concentrations had no additional effect in improving angiographic features of CAD. Following our subgroup analysis of patients with LDL cholesterol levels less than or greater than 2.59 mmol/l before apheresis, however, we reject the hypothesis. The subgroups differed significantly in concentrations of LDL cholesterol (uncorrected and corrected) and total cholesterol but not in those of Lp(a), HDL cholesterol, triglycerides, or fibrinogen. Given that the subgroups had similar reductions in MACE rate, LDL cholesterol concentration is unlikely to have determined outcome. The findings after **Figure 2** Changes in annual nonfatal MACE rates before and after initiation of lipid apheresis. For calculation of the annual complication rates, when a patient experienced multiple MACE in 1 day only the causative event was counted. The annual complication rates are, therefore, lower than the sum of all single events. ^{a}P <0.0001. Abbreviations: CAD, coronary artery disease; CR_{pre}, complication rate before apheresis; CR_{post}, complication rate after apheresis was started; MACE, major adverse coronary events; MI, myocardial infarction; PCI, percutaneous coronary intervention. correction of LDL cholesterol strengthen this argument; the reduction in true LDL cholesterol values in patients whose uncorrected LDL cholesterol levels reached 2.59 mmol/l or less was too small to explain the 87% reduction in MACE. The apparent discrepancy between our results and those of FHRS and LAARS might be related to the facts that these trials assessed angiographic features of CAD and not MACE rates and that they included patients with familial hyper-cholesterolemia, which has a specific molecular pathology and predominant increases in LDL levels. Thus, the thrombogenic properties of extreme Lp(a) concentrations might be more relevant to cardiovascular complications than to angiographic progression. In the present study, we observed a substantial proportion of MACE occurring shortly after endothelial injury caused during catheter-based procedures or CABG, particularly before the start of apheresis therapy. Associations between raised Lp(a) concentrations and the recurrence of atherosclerosis after PCI and CABG have been described by others, 4,38,39 and like others before, we propose an underlying prothrombotic effect of Lp(a). In particular, we hypothesize that the missing link may be the injury-mediated release of endothelium-derived factors capable of activating the acute-phase properties of the apoprotein(a) in the Lp(a) particle. In support of this hypothesis, when concentrations of Lp(a) are high, particles have been shown to bind with high affinity at sites of endothelial injury and trigger the release of hemostatic factors, such as tissue factor pathway inhibitor, CD40, fibronectin, platelet-derived growth factor, and platelet-activating factor, which promote thrombus formation. 10-12, 38-40 In this setting, Lp(a) acts as a substrate and effector, and as a catalytic or inhibitory player, because the resolution of thrombus formation is associated with high affinity binding of Lp(a) to factor XIII and fibrin(ogen). 10-12,40 Lp(a) not only is part of early atherosclerotic lesions, but it also exerts effects on platelets, macrophages, adhesion molecules, phospholipids, and extracellular matrix proteoglycans, all of which participate in promoting wound healing. Therefore, invasive procedures that cause endothelial injury are likely more troublesome for patients with high Lp(a) levels, and apheresis might improve the MACE rate because it reduces the overabundance of Lp(a) to levels below that at which the atherothrombotic risks are also reduced. Three limitations in our study need to be mentioned. First, the study has retrospective and prospective components. We selected this design, however, because it allowed us to carefully select the cohort, generate clear end points, include external quality controls, and build close affiliations with the apheresis centers over the years of follow-up. Table 4 Laboratory variables before and after intervention for patients stratified by preintervention LDL cholesterol levels. | Mean (±SD) laboratory variable | Lipid-lowering medication only | | | Apheresis plus lipid-lowering medication | | | | |--------------------------------------|---------------------------------------------------------------|--------------------------|---------|---------------------------------------------------------------|--------------------------|----------|--| | | LDL cholesterol achieved with lipid-lowering medication alone | | P value | LDL cholesterol achieved with lipid-lowering medication alone | | P value | | | | ≤2.59 mmol/l
(n = 42) | >2.59 mmol/l
(n = 78) | - | ≤2.59 mmol/l
(n = 42) | >2.59 mmol/l
(n = 78) | | | | Lipoprotein(a) (μmol/l) ^a | 4.18±1.21 | 4.25±1.64 | 0.779 | 1.14±0.54 | 1.21 ± 0.61 | 0.605 | | | Total cholesterol (mmol/l)b | 4.40±1.76 | 6.35 ± 1.55 | <0.0001 | 2.25 ± 0.57 | 2.85 ± 0.78 | < 0.0001 | | | LDL cholesterol (mmol/l)b | 1.97±0.44 | 3.96±9.58 | <0.0001 | 0.83 ± 0.39 | 1.37±0.62 | <0.0001 | | | Corrected LDL cholesterol (mmol/l)b | 0.60 | 2.56 | <0.0001 | 0.47 | 0.98 | < 0.0001 | | | HDL cholesterol (mmol/l)b | 1.37±0.47 | 1.42±0.44 | 0.359 | 1.22±0.36 | 1.19±0.39 | 0.727 | | | Triglycerides (mmol/l) ^c | 1.89±1.11 | 2.14±1.40 | 0.555 | 0.81 ± 0.46 | 1.06 ± 0.71 | 0.104 | | | Fibrinogen (μmol/l) ^d | 9.53±3.15 | 9.61±2.68 | 0.725 | 5.70±2.88 | 5.85 ±2.91 | 0.799 | | ^aTo convert to mg/dl divide by 0.0357. ^bTo convert to mg/dl divide by 0.0259. ^cTo convert to mg/dl divide by 0.0113. ^dTo convert to mg/dl divide by 0.0294. Table 5 Annual rates of nonfatal major adverse coronary events stratified by LDL cholesterol levels achieved with lipid-lowering medication alone. | MACE | LDL cholesterol level achieved with lipid-lowering medication alone | | | | | | | | | |------|---|----------------------------|------------------|----------|--|----------------------------|------------------|----------|--| | | ≤2.59 mmol (i.e. ≤100 mg/dl), n = 42 | | | | >2.59 mmol/l (i.e. >100 mg/dl), n = 78 | | | | | | | MACE rate during lipid-lowering medication alone | MACE rate during apheresis | Reduction
(%) | P value | MACE rate during lipid-lowering medication alone | MACE rate during apheresis | Reduction
(%) | P value | | | MACE | 1.190 | 0.136 | 89% | <0.0001 | 0.984 | 0.149 | 85% | < 0.0001 | | | MI | 0.436 | 0.008 | 98% | < 0.0001 | 0.314 | 0.013 | 96% | < 0.0001 | | | PCI | 0.824 | 0.053 | 94% | <0.0001 | 0.783 | 0.078 | 90% | <0.0001 | | | CABG | 0.259 | 0.029 | 89% | 0.0021 | 0.136 | 0.015 | 89% | < 0.0001 | | Abbreviations: MACE, major adverse coronary events; MI, myocardial infarction; PCI, percutaneous coronary intervention. Second, we appreciate that the study lacks a direct standard of comparison between treatments for the mortality analysis, because an inclusion criterion was that the patients survived until apheresis. Statistically, even with an underestimated death rate during the period of lipid-lowering medication alone (which is to the disadvantage of our hypothesis), our results remain significant. Moreover, five deaths (i.e. one per 261 patient years) following initiation of apheresis is a remarkably low rate for a high-risk cohort, particularly given their long histories of heart disease and their unfavorable comorbidity, such as long-term end-stage renal disease, endstage diabetes, recurrent pulmonary embolism, and severe aortic valve stenosis. Notably, most apheresis-associated MACE occurred during the first 6 months after treatment started and then steadily declined. Third, it is difficult to prove unambiguously that concomitant reduction of other proatherogenic blood compounds through apheresis was not beneficial. Fibrinogen and C-reactive protein, for example, are reduced by some, but not all, of the applied apheresis devices. Nevertheless, MACE rate reductions were similar for all the applied devices, regardless of whether they lowered fibrinogen and C-reactive protein levels, although the number of patients treated by each were small. In our cohort, changes in concentrations of these risk markers might have a complementary benefit, but limited effects are likely since fibrinogen and C-reactive protein concentrations were already normal or only moderately elevated before the initiation of apheresis. Lipid apheresis provided a highly efficacious and safe tool to reduce Lp(a) levels, and this therapy should be considered for treatment of patients in whom maximally tolerated doses of medication alone have failed to control CADassociated events. Selection of individuals who have early atherosclerosis, or a positive family history for this disease, by screening for elevated Lp(a) levels might be useful to direct management. Study is warranted to distinguish between unhealthy and harmless Lp(a) elevations to develop primary preventive strategies according to individual risks. Finally, despite good adherence to apheresis with intervals of 1 to 2 weeks between sessions, this therapy is an intricate and long-term option. Our findings highlight the need for the development of drugs to effectively lower extremely high Lp(a) concentrations in patients with CAD. **Supplementary information** in the form of an appendix is available on the *Nature Clinical Practice Cardiovascular Medicine* website. #### **KEY POINTS** - The clinical relevance of lipoprotein(a) to atherothrombotic complications has been a matter of diagnostic and therapeutic controversy - Our findings provide evidence that lowering concentrations of lipoprotein(a) significantly reduces the rate of major adverse coronary events - Application of lipid apheresis—the only currently available method to drastically reduce lipoprotein(a) levels—safely and efficaciously reduced the frequency of myocardial infarction by 97%, irrespective of LDL cholesterol concentrations before therapy - Screening for extremely high lipoprotein(a) elevations in patients with premature atherosclerosis, recurrent MACE, or a positive family history for atherosclerosis might be useful to direct therapy - Given the inconvenience of apheresis therapy, our findings highlight the need for development of drugs to effectively lower pathogenic lipoprotein(a) concentrations #### References - Berg K (1963) A new serum type system in man: the Lp system. Acta Pathol Microbiol Scand 59: 369–382 - 2 Rifai N et al. (2004) Apolipoprotein(a) size and lipoprotein(a) concentration and future risk of angina pectoris with evidence of severe coronary atherosclerosis in men: the Physicians Health Study. Clin Chem 50: 1364–1371 - 3 Bostom AG et al. (1996) Elevated plasma lipoprotein(a) and coronary heart disease in men aged 55 years and - younger. A prospective study. *JAMA* **276**: 544–548 - 4 Berg K et al. (1997) Lp(a) lipoprotein level predicts survival and major coronary events in the Scandinavian Simvastatin Survival study. Clin Genet 52: 254–261 - 5 Kronenberg F et al. (1999) Role of lipoprotein(a) and apolipoprotein(a) phenotype in atherogenesis. Results from the Bruneck study. Circulation 10: 1154–1160 - 6 Kostner GM et al. (1981) Lipoprotein Lp(a) and the risk for myocardial infarction. Atherosclerosis 38: 51–61 - 7 Cremer P et al. (1994) Lp(a) as predictor of myocardial infarction in comparison to fibrinogen, LDL-cholesterol and other risk factors: results from the prospective Göttingen Risk Incidence and Prevalence Study (GRIPS). Eur J Clin Invest 24: 444–453 - 8 Danesh J et al. (2000) Lipoprotein(a) and coronary heart disease, meta-analysis of prospective studies. Circulation 102: 1082–1085 - 9 Luc G et al. (2002) Lipoprotein(a) as a predictor of coronary heart disease: the PRIME study. Atherosclerosis 163: 377–384 - 10 Utermann G (1989) The mysteries of lipoprotein(a). Science 346: 904–910 - 11 Bennett A et al. (2008) Lipoprotein(a) levels and risk of future coronary heart disease. Large-scale prospective data. Arch Intern Med 168: 598–608 - 12 Hajjar KA and Nachman R (1996) The role of lipoprotein(a) in atherogenesis and thrombosis. *Annu Rev Med* **47:** 423–442 - 13 Strater R et al. (2002) Prospective assessment of risk factors for recurrent stroke during childhood: a 5-year follow-up study. Lancet 360: 1540–1545 - 14 Dieplinger B et al. (2007) Increased serum lipoprotein(a) concentrations and low molecular weight phenotypes of apolipoprotein(a) are associated with symptomatic peripheral arterial disease. Clin Chem 53: 1298–1305 - 15 von Eckardstein A et al. (2001) Lipoprotein(a) further increases the risk of coronary events in men with high global cardiovascular risk. J Am Coll Cardiol 37: 434–439 - 16 Panza F et al. (2007) Lipoproteins, vascular-related genetic factors, and human longevity. Rejuvenation Res 10: 441–458 - 17 Thompson GR et al. (1995) The familial hypercholesterolaemia regression study: a randomised trial of low-density-lipoprotein apheresis. Lancet 345: 811–816 - 18 Kroon AA et al. (1996) LDL-Apheresis Atherosclerosis Regression Study (LAARS). Effect of aggressive versus conventional lipid lowering treatment on coronary atherosclerosis. Circulation 93: 1826–1835 - 19 Maher VM et al. (1995) Effects of lowering elevated LDL cholesterol on the cardiovascular risk of Lp(a). JAMA 274: 1771–1774 - 20 Kraft HG et al. (1996) Apolipoprotein(a) kringle IV repeat number predicts risk for coronary heart disease. Arterioscler Thromb Vasc Biol 16: 713–719 - 21 Sandholzer C et al. (1992) Apo(a) isoforms predict risk for coronary heart disease. A study in six populations. Arterioscler Thromb 12: 1214–1226 - 22 Marcovina SM et al. (2003) Report of the National Heart, Lung and Blood Institute on lipoprotein(a) and cardiovascular disease: recent advances and future directions. Clin Chem 49: 1785–1796 - 23 Kostner GM et al. (1993) Preparation of a stable fresh frozen primary lipoprotein[a] (Lp[a]) standard. J Lipid Res 40: 2255–2263 - 24 Kronenberg F et al. (2004) Lipoprotein(a)- and low-density-derived cholesterol in nephrotic syndrome: impact on lipid-lowering therapy? Kidney Int 66: 348–354 - 25 Kamstrup PR et al. (2008) Extreme lipoprotein(a) levels and the risk of myocardial infarction in the - general population: the Copenhagen City Heart Study. Circulation 117: 176-184 - 26 Brown BG et al. (2001) Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. N Engl J Med 345: 1583-1592 - 27 Derosa G et al. (2007) Effects of nateglinide and glibenclamide on prothrombotic factors in native type 2 diabetic patients treated with metformin: a 1-year, double-blind, randomized clinical trial. Intern Med 46: 1837-1846 - 28 Danik JS et al. (2008) Lipoprotein (a), hormone replacement therapy, and risk of future cardiovascular events. J Am Coll Cardiol 52: 124-131 - 29 Straube R and Kingreen H (1998) Lipoprotein(a)immunapheresis in the treatment of familiar lipoprotein(a) hyperlipoproteinemia in a patient with coronary heart disease. Ther Apher 2: 243-245 - 30 Daida GH et al. (1994) Prevention of restenosis after percutaneous transluminal angioplasty by reducing lipoprotein(a) levels with low-density lipoprotein apheresis. Low-Density Lipoprotein Apheresis Angioplasty Restenosis Trial (L-ART) group. Am J Cardiol 73: 1037-1040 - 31 Jaeger BR (2003) The HELP system for the treatment of atherothrombotic disorders: a review. Ther Apher Dial 7: 391-396 - 32 Beschluss des Bundesausschusses der Ärzte und Krankenkassen vom 24.03.2003 (BUB-Richtlinien). (Reimbursement guidelines of the indication for chronic lipid apheresis by the German Federal Joint Committee as of March 24, 2003.) Dtsch Ärztebl 8: 373-374 - 33 Cummins RO et al. (1991) Recommended guidelines for uniform reporting of data from out-of-hospital cardiac arrest: the Ulstein-style: a statement for health professionals from a task force of the American Heart Association, the European Resuscitation Council, the Heart and Stroke Foundation of Canada, and the Australian Resuscitation Council. Circulation 84: - 34 Smith SC Jr et al. (2006) AHA/ACC Guidelines for secondary prevention for patients with coronary or other atherosclerotic vascular disease: 2006 update. J Am Coll Cardiol 47: 2130-2139 - 35 European Patent by Dietrich Seidel: International publication number: WO_2001/048476 (05.07.2001, Gazette 2001/27), International registration number: PCT/EP/00/13294 published 9th March 2005, Patentblatt 2001/1 (EP1 242 825 B1) - 36 Bosch T (1996) State of the art of lipid apheresis. Artif Organs 20: 292-295 - 37 Mikrozensus 2005: Fragen zur Gesundheit, Statistisches Bundesamt 2006: chapter: Rauchgewohnheiten der Patienten, page 13. Article number: 5239004059004. - 38 Desmarais RL et al. (1995) Elevated lipoprotein(a) is a risk factor for clinical recurrence after coronary balloon angioplasty. Circulation 91: 1403-1409 - 39 Cushing GL et al. (1989) Quantification and localization of apolipoproteins [a] and B in coronary artery bypass vein grafts resected at re-operation. Arteriosclerosis 99: 593-603 - 40 Barre DE (2007) The molecular nature and consequences of lipoprotein (a)'s association with platelets. Protein Pept Lett 14: 839-842 #### Acknowledgments We would like to dedicate this article to Kåre Berg. We are indebted to the patients for their trust and our families for their advice, encouragement and support. We appreciate the dedicated help of the colleagues and nurses of the participating apheresis centers. **Competing interests** The authors declared no competing interests. To order reprints, please contact: · Americas: Tel 212 726 9278; Fax 212 679 0843; author-reprints@nature.com Europe/UK/ROW: Tel + 44 (0)20 7833 4000; Fax + 44 (0)20 7843 4500; author-reprints@nature.com Japan & Korea: Tel +81 3 3267 8751; Fax +81 3 3267 8746; reprints@naturejpn.com